Abstract

Effective scatter correction techniques are required to account for errors due the high scatter fraction seen in positron volume imaging (PVI). To be effective, the correction techniques must be accurate and practical, but they also must not add excessively to the statistical noise in the image. The authors have investigated the noise added by three correction methods: a convolution/subtraction method; a method that interpolates the scatter from the events outside the object; and a dual energy window method with and without smoothing of the scatter estimate. The methods were applied to data generated by Monte Carlo simulation to determine their effect on the variance of the corrected projections. The convolution and interpolation methods did not add significantly to the variance. The dual energy window subtraction method without smoothing increased the variance by a factor of more than twelve, but this factor was improved to 1.2 by smoothing the scatter estimate.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call