Abstract

High activity and stability are essential for (hemi)cellulolytic enzymes used in biomass conversion, while non-productive binding of cellulases to lignin reduces saccharification efficiency and needs to be avoided. One potential strategy is the addition of inexpensive metal ions. This paper describes the influence of divalent metal ions on the activity, thermostability, and saccharification efficiency of (hemi)cellulolytic enzymes produced in-house by Aspergillus niger under solid-state fermentation (SSF). The use of Mn(2+) provided the best (hemi)cellulolytic activity and stability, with an increase in endoglucanase activity of up to 57%. The use of Mn(2+) was then investigated in the saccharification of sugarcane bagasse submitted to acid, steam-explosion, and hydrothermal pretreatments. The addition of Mn(2+) ions at 10mM in the saccharification of acid-pretreated bagasse resulted in a 34% increase in glucose release. These positive effects appeared to be due to a reduction in non-productive enzyme adsorption. The findings suggest that the addition of inexpensive metal ions can help to improve activity, thermostability, and saccharification efficiency of (hemi)cellulolytic enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.