Abstract

Biodegradable polyesters such as poly(epsilon-caprolactone) (PCL) have a number of biomedical applications; however, their usage is often limited by a lack of biological functionality. In this paper, a PCL-based polymer containing pendent groups activated by 4-nitrophenyl chloroformate (NPC) and reactive toward primary amines has been cast into thin films. The reactivity of the films toward poly(l-lysine) and the cell adhesion peptide, GRGDS, was assessed, and their cell adhesive capabilities were characterized. ATR-FTIR analysis found that NPC functional groups were present on the surface of the cast film, and the synthesis, conjugation, and visualization of a fluorescent molecule on these films further demonstrated the success of this functionalization methodology. The immersion of these films into a solution of either poly(l-lysine) (PLL) or GRGDS in PBS (pH 7.4) and subsequent 3T3 fibroblast adhesion studies demonstrated significant improvement in cell adhesion and spreading over films cast from unmodified PCL. This investigation has shown that this novel NPC-containing polymer can be utilized in many applications where increased cellular adhesion is required, or the coupling of specific molecules to polymer surfaces is of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.