Abstract

Cysteine dioxygenase (CDO) utilizes a 3-His facial triad for coordination of its metal center. Recombinant CDO present in cellular lysate exists primarily in the ferrous form and exhibits significant catalytic activity. Removal of CDO from the reducing cellular environment during purification results in the loss of bound iron and oxidation of greater than 99% of the remaining metal centers. The as-isolated recombinant enzyme has comparable activity as the background level of l-cysteine oxidation confirming that CDO is inactive under the aerobic conditions required for catalysis. Including exogenous ferrous iron in assays resulted in non-enzymatic product formation; however, addition of an external reductant in assays of the purified protein resulted in the recovery of CDO activity. EPR spectroscopy of CDO in the presence of a reductant confirms that the recovered activity is consistent with reduction of iron to the ferrous form. The as-isolated enzyme in the presence of l-cysteine was nearly unreactive with the dioxygen analog, but had increased affinity when pre-incubated with an external reductant. These studies shed light on the discrepancies among reported kinetic parameters for CDO and also juxtapose the stability of the 3-His and 2-His/1-carboxylate ferrous enzymes in the presence of dioxygen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.