Abstract

Fighting is dangerous, which is why animals choose to flee once the costs outweigh the benefits, but the mechanisms underlying this decision-making process are unknown. By manipulating aggressive signaling and applying nitrergic drugs, we show that the evolutionarily conserved neuromodulator nitric oxide (NO), which has a suppressing effect on aggression in mammals, can play a decisive role. We found that crickets, which exhibit spectacular fighting behavior, flee once the sum of their opponent's aversive actions accrued during fighting exceeds a critical amount. This effect of aversive experience is mediated by the NO signaling pathway. Rather than suppressing aggressive motivation, NO increases susceptibility to aversive stimuli and with it the likelihood to flee. NO's effect is manifested in losers by prolonged avoidance behavior, characteristic for social defeat in numerous species. Intriguingly, fighting experience also induces, via NO, a brief susceptible period to aversive stimuli in winners just after victory. Our findings thus reveal a key role for NO in the mechanism underlying the decision to flee and post-conflict depression in aggressive behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call