Abstract

Background: The Mureș River Basin is a long-term heavily polluted watershed, in a situation of climate changes with decreasing water flow and related decreasing dilution capacity. Here, a mixture of emerging pollutants such as pharmaceuticals were targeted to reveal potential risks regarding the natural lotic ecosystems. Due to the continuous discharge into the environment, pharmaceuticals are gaining persistent organic pollutant characteristics and are considered emerging pollutants. Based on the hazard quotient, this research highlights the dangerous concentrations of carbamazepine, ibuprofen, furosemide, and enalapril in river water. Results: High levels of four pharmaceutical compounds (carbamazepine, ibuprofen, furosemide, and enalapril) and some of their derived metabolites (enalaprilat, carboxyibuprofen, 1-hydroxyibuprofen, and 2-hydroxyibuprofen) were reported in our study in the Mureș River Basin. Overall, pharmaceutical concentrations were found to be highest in the wastewater treatment plant (WWTP) effluent, median downstream of the WWTP, and lowest upstream of the WWTP, as was expected. For all pharmaceutical compounds tested, we recorded concentrations above the limit of quantification (LOQ) in at least one of the sites tested. Carbamazepine exhibited the highest mean values upstream, downstream, and at the WWTP. As expected, the highest concentrations for all the studied pharmaceutical compounds were detected in the WWTP effluent. All Hazard Quotient (HQ) values were below one (on a logarithmic scale in base 10), with the highest values in the WWTP and the lowest in the river upstream of the WWTP. The HQ intervals were in the same range for furosemide, carbamazepine, and ibuprofen at each of the three different sites: upstream WWTP effluent, and downstream. The interval for enalapril stands out as having the lowest HQ at all three sites. Conclusions: Based on these results, the large and complex hydrographical system Mureș River Basin was transformed from a grey area, with little information about pharmaceutical contamination, to a hotspot in terms of contamination with emerging pollutants. Pharmaceutical compound concentrations were found to be the highest in WWTP effluents. The WWTP effluent concentrations were among the highest in Europe, indicating that treatment plants are the primary source of water pollution with pharmaceuticals compounds. The detected levels were higher than the safety limit for carbamazepine and ibuprofen. The determined HQ values imply that the measured levels do pose a threat to the environment for the studied pharmaceuticals. Based on the obtained results, human communities can assess, monitor, predict, and adapt in time to these already-present regional challenges and risks for sustainable use of natural resources, including water and associated products and services.

Highlights

  • Pharmaceutical concentrations are highest in the wastewater treatment plant (WWTP) effluent, median downstream of the WWTP, and lowest upstream of the WWTP, as was expected (Table 4, Table 5)

  • The situation worsens in the WWTP effluent, where the concentration average is higher than the AA-environmental quality standards (EQS) for carbamazepine

  • Based on this study’s results, the large and complex hydrographical system Mures, River Basin was transformed from a grey area to a hotspot in contamination with emerging pharmaceuticals

Read more

Summary

Introduction

Results: High levels of four pharmaceutical compounds (carbamazepine, ibuprofen, furosemide, and enalapril) and some of their derived metabolites (enalaprilat, carboxyibuprofen, 1-hydroxyibuprofen, and 2-hydroxyibuprofen) were reported in our study in the Mures, River Basin. The WWTP effluent concentrations were among the highest in Europe, indicating that treatment plants are the primary source of water pollution with pharmaceuticals compounds. The unintentional presence of pharmaceuticals in the aquatic ecosystems (water, sediment, and biota) has become increasingly apparent in concentrations that can have a negative impact on the aquatic organisms and ecological processes Due to their presence in the environment, pharmaceuticals are starting to be considered emerging pollutants: compounds not yet included in water-quality regulations, with unknown or poorly understood effects, and pose a potential threat to the ecosystems and human safety and health [3]. One of the large-scale second-order tributaries of the Danube is the Mures River; its upper and middle sectors are located in the amphitheater-like Transylvanian depression, ringed by the South-Eastern Carpathians, and inhabited by over seven million people [7], making it a zone containing important human activities causing adverse effects [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.