Abstract

It is increasingly common to find graphs in which edges bear different types, indicating a variety of relationships. For such graphs we propose a class of reachability queries and a class of graph patterns, in which an edge is specified with a regular expression of a certain form, expressing the connectivity in a data graph via edges of various types. In addition, we define graph pattern matching based on a revised notion of graph simulation. On graphs in emerging applications such as social networks, we show that these queries are capable of finding more sensible information than their traditional counterparts. Better still, their increased expressive power does not come with extra complexity. Indeed, (1) we investigate their containment and minimization problems, and show that these fundamental problems are in quadratic time for reachability queries and are in cubic time for pattern queries. (2) We develop an algorithm for answering reachability queries, in quadratic time as for their traditional counterpart. (3) We provide two cubic-time algorithms for evaluating graph pattern queries based on extended graph simulation, as opposed to the NP-completeness of graph pattern matching via subgraph isomorphism. (4) The effectiveness, efficiency and scalability of these algorithms are experimentally verified using real-life data and synthetic data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.