Abstract

It is well known that in standard linear regression models with independent and identically distributed data and homoskedasticity, adding “irrelevant regressors” hurts (asymptotic) efficiency unless such irrelevant regressors are orthogonal to the remaining regressors. But we have found that under (conditional) heteroskedasticity “irrelevant regressors” can always be found such that one can achieve the asymptotic variance of the generalized least squares estimator by adding the “irrelevant regressors” to the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.