Abstract

The effect of adding pulsatility to gaseous oxygen persufflation during liver preservation was studied in an isolated rat liver model. Livers from male Wistar rats were retrieved 30 min after cardiac arrest of the donor and subjected to 18 h of cold storage. Some grafts were subjected to nonpulsatile or pulsatile gaseous oxygen persufflation. Graft viability was assessed thereafter upon warm reperfusion in vitro (n = 5 per group). Pulsatile persufflation significantly improved parenchymal integrity (enzyme release, bile flow) upon reperfusion, with respect to nonpulsatile persufflation or cold storage (CS) (e.g., max. release of alanine aminotransferase: 44 ± 10 vs. 178 ± 29 vs. 345 ± 100 U/L; pulsatile vs. nonpulsatile persufflation vs. CS).The effect was associated with the prevention of the ischemic decline in gene and protein expression of the vasoprotective Krüppel-like factor 2, increased perfusate levels of the endogenous vasodilator nitric oxide, and reduced portal vascular resistance upon reperfusion, while nonpulsatile persufflation was less effective (e.g., vascular resistance: 1235 ± 108 vs. 1607 ± 155 vs. 2215 ± 208 Pa s/mL; pulsatile vs. nonpulsatile persufflation vs. CS). In conclusion, pulsatile mechanostimulation of the hepatovasculature seems a genuine protective mechanism, affecting early graft recovery upon reperfusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call