Abstract

This article analyzes the simple Rescorla-Wagner learning rule from the vantage point of least squares learning theory. In particular, it suggests how measures of risk, such as prediction risk, can be used to adjust the learning constant in reinforcement learning. It argues that prediction risk is most effectively incorporated by scaling the prediction errors. This way, the learning rate needs adjusting only when the covariance between optimal predictions and past (scaled) prediction errors changes. Evidence is discussed that suggests that the dopaminergic system in the (human and nonhuman) primate brain encodes prediction risk, and that prediction errors are indeed scaled with prediction risk (adaptive encoding).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.