Abstract

Magnesium plays an important role in the body, mediating cell–extracellular matrix interactions and bone apatite structure and density. This study investigated, for the first time, the effects of adding magnesium oxide (MgO) nanoparticles to poly (l-lactic acid) (PLLA) and to hydroxyapatite (HA) nanoparticle–PLLA composites for orthopedic tissue engineering applications. Results showed that MgO nanoparticles significantly enhanced osteoblast adhesion and proliferation on HA–PLLA nanocomposites while maintaining mechanical properties (Young’s modulus ∼1000MPa) suitable for cancellous bone applications. Additionally, osteoblasts (or bone-forming cells) cultured in the supernatant of degrading nanocomposites showed improved proliferation in the presence of magnesium, indicating that the increased alkalinity of solutions containing MgO nanocomposites had no toxic effects towards cells. These results together indicated the promise of further studying MgO nanoparticles as additive materials to polymers to enhance the integration of implanted biomaterials with bone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.