Abstract
Two constructions for adding an involution operator to residuated ordered monoids are investigated. One preserves integrality and the mingle axiom x 2≤x but fails to preserve the contraction property x≤x 2. The other has the opposite preservation properties. Both constructions preserve commutativity as well as existent nonempty meets and joins and self-dual order properties. Used in conjunction with either construction, a result of R.T. Brady can be seen to show that the equational theory of commutative distributive residuated lattices (without involution) is decidable, settling a question implicitly posed by P. Jipsen and C. Tsinakis. The corresponding logical result is the (theorem-) decidability of the negation-free axioms and rules of the logic RW, formulated with fusion and the Ackermann constant t. This completes a result of S. Giambrone whose proof relied on the absence of t.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.