Abstract

Here we propose a polarization-dependent gradient phase modulation strategy and fabricate a local polarization-matched metasurface to add/drop polarization multiplexed cylindrical vector beams (CVBs). The two orthogonal linear polarization states in CVB multiplexing will represent as radial- and azimuthal-polarized CVBs, which means that we must introduce independent wave vectors to them for adding/dropping the polarization channels. By designing the rotation angle and geometric sizes of a meta-atom, a local polarization-matched propagation phase plasmonic metasurface is constructed, and the polarization-dependent gradient phases were loaded to perform this operation. As a proof of concept, the polarization multiplexed CVBs, carrying 150-Gbit/s quadrature phase shift keying signals, are successfully added and dropped, and the bit error rates approach 1 × 10-6. In addition to representing a route for adding/dropping polarization multiplexed CVBs, other functional phase modulation of arbitrary orthogonal linear polarization bases is expected, which might find potential applications in polarization encryption imaging, spatial polarization shaping, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.