Abstract

If κ is measurable, Prikry's forcing adds a sequence of ordinals of order type ω cofinal in κ. This destroys the regularity of κ but κ does remain uncountable. Magidor has a forcing notion generalizing Prikry's which adds a closed cofinal sequence of ordinals through a large cardinal. The cardinal remains uncountable but uts regularity is still destroyed. We obtain a forcing notion which adds a closed cofinal sequence of ordinals (and more complex objects) through a large cardinal κ, of order type κ, and keeps κ regular. In fact κ remains measurable after the forcing. Our forcing shares certain properties with Prikry's forcing. Closed cofinal sebsequences of generic sequences are generic (under appropriate interpretations). Archetypical generic sequences can be generated by taking the critical points of iterated elementary embeddings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.