Abstract

The extreme interest of set theorists in the notion of “closed unbounded set” is epitomized in the following well-known theorem:Theorem A. For any regular cardinal κ > ω, the intersection of any two closed unbounded subsets of κ is closed and unbounded.The proof of this theorem is easy and in fact yields a stronger result, namely that for any uncountable regular cardinal κ the intersection of fewer than κ many closed unbounded sets is closed and unbounded. Thus, if, for κ a regular uncountable cardinal, we let denote {A ⊆ κ ∣ A contains a closed unbounded subset}, then, for any such κ, is a κ-additive nonprincipal filter on κ.Now what about the possibility of being an ultrafilterκ It is routine to see that this is impossible for κ > ℵ1. However, for κ = ℵ1 the situation is different. If were an ultrafilter, ℵ1 would be a measurable cardinal. As is well-known this is impossible if we assume the axiom of choice; however if ZF + “there exists a measurable cardinal” is consistent, then so is ZF + “ℵ1 is a measurable cardinal” [2]. Furthermore, under the assumption of certain set theoretic axioms (such as the axiom of determinateness or various infinite exponent partition relations) can be proven to be an ultrafilter. (See [3] and [5].)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.