Abstract
Addictive drugs have been hypothesized to access the same neurophysiological mechanisms as natural learning systems. These natural learning systems can be modeled through temporal-difference reinforcement learning (TDRL), which requires a reward-error signal that has been hypothesized to be carried by dopamine. TDRL learns to predict reward by driving that reward-error signal to zero. By adding a noncompensable drug-induced dopamine increase to a TDRL model, a computational model of addiction is constructed that over-selects actions leading to drug receipt. The model provides an explanation for important aspects of the addiction literature and provides a theoretic view-point with which to address other aspects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.