Abstract

We published spectra of phosphine molecules in Venus' clouds, following open-science principles in releasing data and scripts (with community input leading to ALMA re-processing, now benefiting multiple projects). Some misconceptions about de-trending of spectral baselines have also emerged, which we address here. Using the JCMT PH3-discovery data, we show that mathematically-correct polynomial fitting of periodic ripples does not lead to "fake lines" (probability < ~1%). We then show that the ripples can be characterised in a non-subjective manner via Fourier transforms. A 20 ppb PH3 feature is ~5{\sigma} compared to the JCMT baseline-uncertainty, and is distinctive as a narrow perturber of the periodic ripple pattern. The structure of the FT-derived baseline also shows that polynomial fitting, if unguided, can amplify artefacts and so artificially reduce significance of real lines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call