Abstract

Background and AimsCorrect identification of small hepatocellular carcinomas (HCCs) and benign nodules in cirrhosis remains challenging, quantitative apparent diffusion coefficients (ADCs) have shown potential value in characterization of benign and malignant liver lesions. We aimed to explore the added value of ADCs in the identification of small (≤3 cm) HCCs and benign nodules categorized as Liver Imaging Reporting and Data System (LI-RADS) 3 (LR-3) and 4 (LR-4) in cirrhosis.MethodsNinety-seven cirrhosis patients with 109 small nodules (70 HCCs, 39 benign nodules) of LR-3 and 4 LR-4 based on major and ancillary magnetic resonance imaging features were included. Multiparametric quantitative ADCs of the lesions, including the mean ADC (ADCmean), minimum ADC (ADCmin), maximal ADC (ADCmax), ADC standard deviation (ADCstd), and mean ADC value ratio of lesion-to-liver parenchyma (ADCratio) were calculated. Regarding the joint diagnosis, a nomogram model was plotted using multivariate logistic regression analysis. The performance was assessed using the area under the receiver operating characteristic curve (AUC).ResultsThe ADCmean, ADCmin, ADCratio, and ADCstd were significantly associated with the identification of small HCC and benign nodules (p<0.001). For the joint diagnosis, the LI-RADS category (odds ratio [OR]=12.50), ADCmin (OR=0.14), and ADCratio (OR=0.12) were identified as independent factors for distinguishing HCCs from benign nodules. The joint nomogram model showed good calibration and discrimination, with a C-index of 0.947. Compared with the LI-RADS category alone, this nomogram model demonstrated a significant improvement in diagnostic performance, with AUC increasing from 0.820 to 0.967 (p=0.001).ConclusionsThe addition of quantitative ADCs could improve the identification of small HCC and benign nodules categorized as LR-3 and 4 LR-4 in patients with cirrhosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.