Abstract

PurposeDuring the coronavirus disease 2019 (COVID-19) pandemic, hospitals still face the challenge of timely identification of infected individuals before inpatient admission. An artificial intelligence approach based on an established clinical network may improve prospective pandemic preparedness. MethodSupervised machine learning was used to construct diagnostic models to predict COVID-19. A pooled database was retrospectively generated from 4437 participant data that were collected between January 2017 and October 2020 at 12 German centers that belong to the radiological cooperative network of the COVID-19 (RACOON) consortium. A total of 692 (15.6 %) participants were COVID-19 positive according to the reference of the reverse transcription-polymerase chain reaction test. The diagnostic models included chest CT features (model R), clinical examination and laboratory test features (model CL), or all three feature categories (model RCL). Performance outcomes included accuracy, sensitivity, specificity, negative and positive predictive value, and area under the receiver operating curve (AUC). ResultsPerformance of predictive models improved significantly by adding chest CT features to clinical evaluation and laboratory test features. Without (model CL) and with inclusion of chest CT (model RCL), sensitivity was 0.82 and 0.89 (p < 0.0001), specificity was 0.84 and 0.89 (p < 0.0001), negative predictive value was 0.96 and 0.97 (p < 0.0001), AUC was 0.92 and 0.95 (p < 0.0001), and proportion of false negative classifications was 2.6 % and 1.7 % (p < 0.0001), respectively. ConclusionsAddition of chest CT features to machine learning-based predictive models improves the effectiveness in ruling out COVID-19 before inpatient admission to regular wards.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.