Abstract

Prediction of the added resistance or corresponding speed loss in real sea conditions is essential to evaluate the performance of a ship. Assessment of the environmental impact on vessel performance is essential for route and cargo planning, optimization of fuel consumption and design, and configuration of engines and the main propulsion system. In the present study, added resistance and speed loss in real sea conditions are evaluated from1 year of onboard monitoring data of a platform supply vessel (PSV) operating in the North Sea. The true sea margin is shown on an annual basis. Relative contributions from environmental conditions and vessel operation control are presented. Results are compared with model experiments and existing numerical methods for prediction of added resistance and speed loss in waves. The study shows that added resistance due to waves for this PSV is significantly larger than predicted by conventional frequency-domain calculations or model tests. No reason for the deviation is found, but it is anticipated that a combination of effects of longitudinal mass radius of gyration, differences in wavelength and steepness in model tests and reality, and nonlinear effects (not accounted for in the numerical calculations) is partly responsible for the deviations. For ships having similar main dimensions, the conventional ways of predicting added resistance or speed loss in waves is nonconservative, and improved methods should be sought.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.