Abstract

BACKGROUND: Stroke often causes impairments in goal-directed movements, which are commonly assessed using goal-directed reaching tasks. Here we present two individuals post-stroke who performed two robotic reaching tasks: 1. Visually Guided Reaching (VGR); reaching a cursor representing the fingertip to virtual targets, 2. Reverse Visually Guided Reaching (RVGR); where the cursor moves in the opposite direction of hand motion, requiring a novel cognitive rule. Participants are typically more successful at reaching targets in the simple VGR task compared to the more complex RVGR task (~92% of our database). The two cases are notable as they performed better on RVGR compared to VGR. CASE DESCRIPTIONS: Case 1: 80-year-old patient with left hemorrhagic thalamic stroke, with interventricular extension, presenting with right hemiparesis/reduced motor control. They were unable to complete reaches to any targets in VGR (0/40 targets), but were able to reach ~30% of the targets (15/48) in RVGR. Case 2: 76-year-old patient with a left ischemic pontine stroke, presenting with right hemiparesis/reduced motor control. They were unable to complete reaches to any targets in VGR (0/40) but were able to reach ~60% of the targets in RVGR (29/48). INTERPRETATION: Better performance in RVGR compared to VGR may be associated with a “dual-task benefit” and has potential clinical implications, including informing neuro-rehabilitative strategies, potentially by including tasks with added complexity or cognitive components. These findings also highlight the utility of robotic tools to provide novel environments within which to identify unique patterns of impairments and abilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call