Abstract

Staphylococcus aureus enterotoxins (SEs, involving SEA, SEB, SEC, SED, and SEE) are considered to be the common toxins causing food poisoning and are not allowed to be detected in food. Accurate and anti-interfering SE detection in a complex food matrix is urgently required for food safety. Dual-modal optical sensors are able to avoid mutual interference of optical signals and possess the advantages of high accuracy and sensitivity. Herein, Au nanobipyramids (Au NBPs) and persistent luminescence ZnGeGaO:Cr,Er,Yb nanoparticle (ZGGO NP) nanocomposites are fabricated using the SEC antibody/antigen as templates, which display enhanced persistent luminescence (PL) and surface-enhanced Raman scattering (SERS) strength. The enhanced PL of Au NBP-ZGGO NP nanocomposites is ascribed to plasmon-enhanced radiative transitions. It is first found that ZGGO NPs display unique upconversion fluorescence, which can be absorbed by Au NBPs and that they largely excite the intensive electromagnetic field for SERS enhancement. Dual-model optical immunoassay achieved anti-interfering and specific SEC detection with a limit of detection of 7.5 pg/mL for the PL signal and 8.9 pg/mL for the SERS signal in the range of 10 pg/mL-100 ng/mL. Depending on the plasmon-enhanced PL mechanism and upconversion fluorescence-enhanced SERS principle, plasmonic NP-semiconductor composites show potential prospects in the establishment of multimodal optical biosensors for the quantitative and accurate evaluation of analytes in a complex food matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.