Abstract

Demand for higher throughput backplane communications, coupled with a desire for design portability and flexibility, has led to high-speed backplane receivers that use front-end analog-to-digital converters (ADCs) and digital equalization. Unfortunately, power and complexity of such receivers can be high and require careful design. This paper presents a parameterized ADC-based backplane receiver model that facilitates design-space exploration to optimize the tradeoffs between power and performance-an accurate behavioral model of front-end ADCs is presented for performance estimation and detailed power models for the digital equalizer (EQ) blocks are developed for power estimation. Model-based simulations suggest that comparator offset correction resolution is the most critical ADC design parameter when an overall receiver performance is concerned. Further receiver design-space exploration reveals that a Pareto optimal frontier exists, which can be used as a guideline to set the initial receiver configurations depending on a given power and performance constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call