Abstract

In the asialoglycoprotein receptor (ASGPR) endocytic pathway, internalized receptors pass through early, recycling, and sorting endosomal compartments before returning to the cell surface. Sorting motifs in the cytoplasmic domain (CD) and protein interactions with these sequences presumably direct receptor trafficking. Previous studies have shown that association of a potential sorting heat shock protein (HSP) heterocomplex with the ASGPR-CD was regulated by casein kinase 2 (CK2)-mediated phosphorylation. Mass spectrometry and immunoblot analyses identified five of these ASGPR-CD-associated proteins as the molecular chaperones glycoprotein 96, HSP70, HSP90, cyclophilin A, and FK 506 binding protein. The present study was undertaken to determine whether any of the adaptor protein complexes (AP1, AP2, or AP3) were selectivity associated with the ASGPR-CD. In conjunction with molecular chaperones, AP2 and AP1 were recovered from a CK2 phosphorylated agarose-GSH-GST-ASGPR-CD matrix. Binding of AP3 was independent of the phosphorylation status of the CD matrix. Inhibition of CK2-mediated phosphorylation with tetrabromobenzotriazole prevented AP recovery within an immunoadsorbed ASGPR complex. Rapamycin, which dissociates the HSP heterocomplex from ASGPR-CD, thereby altering receptor trafficking also, inhibited AP association. Similar results were obtained with an inhibitor of HSP90 heterocomplex formation, geldanmycin. The data presented provide evidence that recruitment of AP1 and AP2, which is necessary for appropriate receptor trafficking, is mediated by the interaction of AP with the ASGPR-CD-bound HSP complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.