Abstract

Extremophilic prokaryotes, inhabitants of hot, cold, acidic, alkaline, saline, and deep-sea ecosystems, are classified as mono- and polyextremophilic or extreme-tolerant. Under conditions of heating, acidification, or salinization, thermophilic saprotrophic archaea are capable of maintaining endogenous homeostasis and high growth rates by biosynthesis of heat shock enzymes (proteins ofgeneral stress response), C40C40 membrane tetraesters with different numbers of cyclopentane rings, trehalose, and other hyperosmolytes. Small size of reduced genomes (0.5–3.0 Mb) of archaeal thermoacidophiles and hyperthermophiles was shown to reflect their adaptability mainly due to phenotypic changes and probably to have a reduced potential for speciation. In contrast, psychrophilic heterotrophic bacteria respond to sublethal temperature decrease by increased conformational flexibility of the macromolecules and elevated content of unsaturated fatty acids in the composition of their membrane lipids, synthesize membrane-associated glycoproteins, anti-freeze proteins, a group of general stress response proteins, specific and inducible cold shock proteins, which increase the growth rate. When slowing down and stopping the growth, psychrophiles switch on the processes of secondary metabolism and sharply increasing the biosynthesis of adaptogenic exopolysaccharides. Thus, they ameliorate the direct effects of salinity and hydrostatic pressure on viable cells, block the viral attack, and affect the microstructure and physicochemical properties of ice. Marine psychrophilic and piezopsychrophilic bacteria havelarger genomes of 2.6–6.4 Mb, which reflects their adaptability due to genotypic changes and an increased potential for speciation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.