Abstract

AbstractPrognostic evaluation involves constructing a prediction model based on available measurements to forecast the health state of an engineering system. One particular prognostic technique, support vector regression, has had successful applications because of its ability to compromise between fitting accuracy and model complexity in training prediction models. In civil engineering applications, compromise between fitting accuracy and model complexity depends primarily on the measured response of the system to loads other than those that are of interest for prognostic evaluation, referred to as extraneous noise in this paper. To achieve accurate prognostic evaluation in the presence of such extraneous noise, this paper presents an approach for optimally weighing fitting accuracy and complexity of a support vector regression model in an iterative manner as new measurements become available. The proposed approach is demonstrated in prognostic evaluation of the structural condition of a historic masonry ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.