Abstract

Multi-objective evolutionary algorithm based on Decomposition (MOEA/D) decomposes a multi-objective problem into a number of scalar optimization problems using uniformly distributed weight vectors. However, uniformly distributed weight vectors do not guarantee uniformity of solutions on approximated Pareto-Front. This study proposes an adaptive strategy to modify these scalarizing weights after regular intervals by assessing the crowdedness of solutions using crowding distance operator. Experiments carried out over several benchmark problems with complex Pareto-Fronts show that such a strategy helps in improving the convergence and diversity of solutions on approximated Pareto-Front. Proposed algorithm also shows better performance when compared with other state-of-the-art multi-objective algorithms over most of the benchmark problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.