Abstract
Adaptive combining is generally a desirable approach for forecasting, which, however, has rarely been explored for discrete response time series. In this paper, we propose an adaptively combined forecasting method for such discrete response data. We demonstrate in theory that the proposed forecast is of the desired adaptation with respect to the widely used squared risk and other significant risk functions under mild conditions. Furthermore, we study the issue of adaptation for the proposed forecasting method in the presence of model screening that is often useful in applications. Our simulation study and two real-world data examples show promise for the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Econometrics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.