Abstract

DC motors are one of the most widely used actuators in industry applications. In its use, the reliability of DC motor performance becomes an important prerequisite that must be met. Therefore, a control scheme is required to meet the above performance demands, especially in the transient, steady state, and system stability aspects. The main problems in DC motor control system, especially in terms of speed control, are the occurrence of changes in system parameters and the presence of disturbances such as load changes. This study offers an Adaptive-Fuzzy-PID (AFPID) control scheme equipped with Disturbance Observer (DOb). AFPID scheme plays a role in handling the change of system parameters, while DOb serves to estimate the occurrence of disturbance. The AFPID control scheme was verified experimentally on a DC motor test-rig that was subjected to load-bearing disturbance. The results of the experiments show that the AFPID control scheme with DOb has a better transient response performance than AFPID without DOb, as well as in the ability to compensate the load changes. The combination of AFPID with DOb offers a more stable performance to DC motor has and is more insensitive to disturbance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.