Abstract
ABSTRACTIn medical studies, Cox proportional hazards model is a commonly used method to deal with the right-censored survival data accompanied by many explanatory covariates. In practice, the Akaike's information criterion (AIC) or the Bayesian information criterion (BIC) is usually used to select an appropriate subset of covariates. It is well known that neither the AIC criterion nor the BIC criterion dominates for all situations. In this paper, we propose an adaptive-Cox model averaging procedure to get a more robust hazard estimator. First, by applying AIC and BIC criteria to perturbed datasets, we obtain two model averaging (MA) estimated survival curves, called AIC-MA and BIC-MA. Then, based on Kullback–Leibler loss, a better estimate of survival curve between AIC-MA and BIC-MA is chosen, which results in an adaptive-Cox estimate of survival curve. Simulation results show the superiority of our approach and an application of the proposed method is also presented by analyzing the German Breast Cancer Study dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Communications in Statistics - Theory and Methods
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.