Abstract

Weakly supervised object localization (WSOL) stands as a pivotal endeavor within the realm of computer vision, entailing the location of objects utilizing merely image-level labels. Contemporary approaches in WSOL have leveraged FPMs, yielding commendable outcomes. However, these existing FPM-based techniques are predominantly confined to rudimentary strategies of either augmenting the foreground or diminishing the background presence. We argue for the exploration and exploitation of the intricate interplay between the object's foreground and its background to achieve efficient object localization. In this manuscript, we introduce an innovative framework, termed adaptive zone learning (AZL), which operates on a coarse-to-fine basis to refine FPMs through a triad of adaptive zone mechanisms. First, an adversarial learning mechanism (ALM) is employed, orchestrating an interplay between the foreground and background regions. This mechanism accentuates coarse-grained object regions in a mutually adversarial manner. Subsequently, an oriented learning mechanism (OLM) is unveiled, which harnesses local insights from both foreground and background in a fine-grained manner. This mechanism is instrumental in delineating object regions with greater granularity, thereby generating better FPMs. Furthermore, we propose a reinforced learning mechanism (RLM) as the compensatory mechanism for adversarial design, by which the undesirable foreground maps are refined again. Extensive experiments on CUB-200-2011 and ILSVRC datasets demonstrate that AZL achieves significant and consistent performance improvements over other state-of-the-art WSOL methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.