Abstract

SUMMARY This paper proposes an adaptive yaw rate feedback control system for a four-wheel-steering (4WS) vehicle which involves a tire/road friction coefficient estimator. The adaptive 4WS system has been developed so that the vehicle possesses desirable lateral characteristics even on slippery roads and in critical driving situations. The friction coefficient is estimated on real time from the yaw rate response of the controlled vehicle with the least squares. The control system adopts a two degree of freedom structure which consists of a feedforward compensator and a feedback control subsystem. The feedforward compensator is determined with the estimated friction coefficient to minimize the steady-state and transient vehicle slip angle in spite of changes in tire/road conditions. The feedback subsystem adopts the Internal Model Control (IMC) structure in order to compensate for nonlinearities and to realize robustness against modelling and estimation errors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.