Abstract

Human fall detection is a subcategory of ambient assisted living. Falls are dangerous for old aged people especially those who are unaccompanied. Detection of falls as early as possible along with high accuracy is indispensable to save the person otherwise it may lead to physical disability even death also. The proposed fall detection system is implemented in the edge computing scenario. An adaptive window-based approach is proposed here for feature extraction because window size affects the performance of the classifier. For training and testing purposes two public datasets and our collected dataset have been used. Anomaly identification based on a support vector machine with an enhanced chi-square kernel is used here for the classification of Activities of Daily Living (ADL) and fall activities. Using the proposed approach 100% sensitivity and 98.08% specificity have been achieved which are better when compared with three recent research based on unsupervised learning. One of the important aspects of this study is that it is also validated on actual real fall data and got 100% accuracy. This complete fall detection model is implemented in the fog computing scenario. The proposed approach of adaptive window based feature extraction is better than static window based approaches and three recent fall detection methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call