Abstract

It is well-known that multivariate curve estimation suffers from the “curse of dimensionality.” However, reasonable estimators are possible, even in several dimensions, under appropriate restrictions on the complexity of the curve. In the present paper we explore how much appropriate wavelet estimators can exploit a typical restriction on the curve such as additivity. We first propose an adaptive and simultaneous estimation procedure for all additive components in additive regression models and discuss rate of convergence results and data-dependent truncation rules for wavelet series estimators. To speed up computation we then introduce a wavelet version of functional ANOVA algorithm for additive regression models and propose a regularization algorithm which guarantees an adaptive solution to the multivariate estimation problem. Some simulations indicate that wavelets methods complement nicely the existing methodology for nonparametric multivariate curve estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.