Abstract
We study the Besov regularity as well as linear and nonlinear approximation of random functions on bounded Lipschitz domains in ℝ d . The random functions are given either (i) explicitly in terms of a wavelet expansion or (ii) as the solution of a Poisson equation with a right-hand side in terms of a wavelet expansion. In the case (ii) we derive an adaptive wavelet algorithm that achieves the nonlinear approximation rate at a computational cost that is proportional to the degrees of freedom. These results are matched by computational experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.