Abstract

Cognitive radar is a recently proposed approach in which a radar system may adaptively and intelligently interrogate a propagation channel using all available knowledge including previous measurements, task priorities, and external databases. A distinguishing characteristic of cognitive radar is that it operates in a closed loop, which enables constant optimization in response to its changing understanding of the channel. In this paper, we compare two different waveform design techniques for use with active sensors operating in a target recognition application. We also propose the integration of waveform design with a sequential-hypothesis-testing framework that controls when hard decisions may be made with adequate confidence. The result is a system that updates multiple target hypotheses/classes based on measured data, customizes waveforms as the class probabilities change, and draws conclusions when sufficient understanding of the propagation channel is achieved

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.