Abstract

Many studies have demonstrated in the past that the level of long-range autocorrelations in series of stride durations, characterizing natural gait variability, is impacted by external constraints, such as treadmill or metronome, or by pathologies, such as Parkinson's or Huntington's disease. Nevertheless, no one has analyzed the effects on this metric of a gait constrained by a robot-mediated walking assistance, which intrinsically tends to normalize the gait pattern. This paper focuses on the influence of a wearable active pelvis orthosis on the level of long-range autocorrelations in series of stride durations. Ten healthy participants, aged between 55 and 77 yr, performed four overground walking sessions, wearing this orthosis, and with different assistive parameters. This study showed that the adaptive assistance provided by this device has the potential of improving gait metrics that are typically affected by aging, such as the hip range of motion, walking speed, stride length, and stride duration, without impacting natural gait variability, i.e., the level of long-range autocorrelations in series of stride durations. This combination is virtuous toward the design of an assistive device for people with locomotion disorders resulting in deteriorated levels of long-range autocorrelations, such as patients with Parkinson's disease.NEW & NOTEWORTHY This study is the first that investigates the effects of a wearable active pelvis orthosis using an oscillator-based adaptive assistance on the level of long-range autocorrelations in series of stride durations during overground walking. It is also the first to compare the effects of different assistance settings on spatiotemporal gait metrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.