Abstract

The article presents a new recursive least squares (RLS) adaptive nonlinear filter, based on the Volterra series expansion. The main approach is to transform the nonlinear filtering problem into an equivalent multichannel, but linear, filtering problem. Then, the multichannel input signal is completely orthogonalized using sequential processing multichannel lattice stages. With the complete orthogonalization of the input signal, only scalar operations are required, instability problems due to matrix inversion are avoided and good numerical properties are achieved. The avoidance of matrix inversion and vector operations reduce the complexity considerably, making the filter simple, highly modular and suitable for VLSI implementations. Several experiments demonstrating the fast convergence properties of the filter are also included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.