Abstract

We propose an adaptive visual target tracking algorithm based on Label-Consistent K -Singular Value Decomposition (LC-KSVD) dictionary learning. To construct target templates, local patch features are sampled from foreground and background of the target. LC-KSVD then is applied to these local patches to simultaneously estimate a set of low-dimension dictionary and classification parameters (CP). To track the target over time, a kernel particle filter (KPF) is proposed that integrates both local and global motion information of the target. An adaptive template updating scheme is also developed to improve the robustness of the tracker. Experimental results demonstrate superior performance of the proposed algorithm over state-of-art visual target tracking algorithms in scenarios that include occlusion, background clutter, illumination change, target rotation and scale changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.