Abstract
In this paper, a novel image-based visual servoing (IBVS) method using Extreme Learning Machine (ELM) and Q-learning is proposed to solve the problems of complex modeling and selection of the servo gain. First, the pseudoinverse of the interaction matrix is approached by ELM which avoids the singularity of the interaction matrix effectively and is robust to interferences such as feature noises and camera calibration errors. Second, a reinforcement learning method, Q-learning, is adopted to adaptively adjust the servo gain in order to improve the convergence speed and stability. Compared with other methods, ELM has better generalization performance, faster operation speed and a unique optimal solution. Also, Q-learning has self-learning ability without experience in advance. The effectiveness of the proposed method is validated by simulations and experiment on a 6-DOF robot with eye-in-hand configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.