Abstract
In human–human communication we can adapt or learn new gestures or new users using intelligence and contextual information. Achieving natural gesture-based interaction between humans and robots, the system should be adaptable to new users, gestures and robot behaviors. This paper presents an adaptive visual gesture recognition method for human–robot interaction using a knowledge-based software platform. The system is capable of recognizing users, static gestures comprised of the face and hand poses, and dynamic gestures of face in motion. The system learns new users, poses using multi-cluster approach, and combines computer vision and knowledge-based approaches in order to adapt to new users, gestures and robot behaviors. In the proposed method, a frame-based knowledge model is defined for the person-centric gesture interpretation and human–robot interaction. It is implemented using the frame-based Software Platform for Agent and Knowledge Management (SPAK). The effectiveness of this method has been demonstrated by an experimental human–robot interaction system using a humanoid robot ‘Robovie’.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.