Abstract

High-speed transport of continuous materials such as belts, webs, filaments, or bands can cause unwanted vibration. Vibration control for these systems often focuses on restricting the response resulting from external disturbances (e.g. support roller eccentricity or aerodynamic excitation) to areas not requiring high precision positioning. This paper introduces vibration controllers for an axially moving string system consisting of a controlled span coupled to a disturbed span via an actuator. The system model includes a partial differential equation for the two spans and an ordinary differential equation for the actuator. Exact model knowledge and adaptive isolation controllers, based on Lyapunov theory, regulate the controlled span from bounded disturbances in the adjacent, uncontrolled span. Assuming distributed damping in the uncontrolled span, the exact model knowledge and adaptive controllers exponentially and asymptotically drive the controlled span displacement to zero, respectively, while ensuring bounded uncontrolled span displacement and control force. Experiments demonstrate the effectiveness of the proposed controller in isolating the controlled span from disturbances and damping the controlled span displacement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.