Abstract
Abstract We design an adaptive virtual element method (AVEM) of lowest order over triangular meshes with hanging nodes in 2d, which are treated as polygons. AVEM hinges on the stabilization-free a posteriori error estimators recently derived in Beirão da Veiga et al. (2023, Adaptive VEM: stabilization-free a posteriori error analysis and contraction property. SIAM J. Numer. Anal., 61, 457–494). The crucial property, which also plays a central role in this paper, is that the stabilization term can be made arbitrarily small relative to the a posteriori error estimators upon increasing the stabilization parameter. Our AVEM concatenates two modules, GALERKIN and DATA. The former deals with piecewise constant data and is shown in the above article to be a contraction between consecutive iterates. The latter approximates general data by piecewise constants to a desired accuracy. AVEM is shown to be convergent and quasi-optimal, in terms of error decay versus degrees of freedom, for solutions and data belonging to appropriate approximation classes. Numerical experiments illustrate the interplay between these two modules and provide computational evidence of optimality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.