Abstract
A new dc motor control technique for the Coulomb friction compensation is proposed. The technique uses an adaptive velocity control scheme for a dc servo motor with on-line estimated parameters, including a Coulomb friction parameter, which is a combination of the Coulomb friction torque, motor time constant, moment of inertia of the motor, and sampling time of the discrete-time motor model. The estimation model used in the adaptive control process is validated off-line by a pseudo-linear regression algorithm for system parameters in a linear ARMAX model, and by adaptive Kalman filters for the Coulomb friction parameter described as pseudo-random binary sequences. The adaptive controller consists of a friction compensator and a PID controller, whose gains are adjusted adaptively in terms of estimated parameters. The proposed adaptive control law is implemented and tested on a microprocessor-based dc servo motor, and is applicable to many dc-motor-driven precision servo mechanisms. Experimental results are shown to be superior to those of conventional PID controls in terms of parameter fluctuation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.