Abstract
We present and benchmark quantum computing approaches for calculating real-time single-particle Green's functions and nonlinear susceptibilities of Hamiltonian systems. The approaches leverage adaptive variational quantum algorithms for state preparation and propagation. Using automatically generated compact circuits, the dynamical evolution is performed over sufficiently long times to achieve adequate frequency resolution of the response functions. We showcase accurate Green's function calculations using a statevector simulator on classical hardware for Fermi-Hubbard chains of 4 and 6 sites, with maximal ansatz circuit depths of 65 and 424 layers, respectively, and for the molecule LiH with a maximal ansatz circuit depth of 81 layers. Additionally, we consider an antiferromagnetic quantum spin-1 model that incorporates the Dzyaloshinskii-Moriya interaction to illustrate calculations of the third-order nonlinear susceptibilities, which can be measured in two-dimensional coherent spectroscopy experiments. These results demonstrate that real-time approaches using adaptive parametrized circuits to evaluate linear and nonlinear response functions can be feasible with near-term quantum processors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.