Abstract

Aiming at the force-tracking error phenomenon of impedance control in an unknown surface environment, an adaptive variable-damping impedance control algorithm is proposed, and the stability and convergence of the algorithm are deduced. An adaptive-law selection rule is proposed to aim at the phenomenon that the adaptive parameters are too large to cause the system oscillation and overshoot and too small to cause the adaptive line variation in the curved surface environment. Finally, experiments conclude that the impedance control based on the adaptive variable-damping algorithm has a better force-tracking effect than the ordinary impedance control in the curved surface environment where the contact surface between the end-effector of the manipulator and the atmosphere is unknown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call