Abstract

To study the feasibility and safety for patients with high-risk (HR) and very high-risk (VHR) prostate cancer treated with adaptive ultra-hypofractionated whole-pelvic radiotherapy (UHF-WPRT) on 1.5 magnetic resonance (MR)-Linac. Sevenpatients with clinical stage T3a-4N0-1M0-1c consecutively treated with UHF-WPRT on a 1.5-T MR-Linac were recruited prospectively in a phase II trial (NCT05183074, ChiCTR2000033382). A 36.25 Gy dose in five fractions was delivered every other day with a boost of 40 Gy to the whole prostate, as well as 25 Gy to whole pelvic nodal area with a concomitant boost of 35 Gy to metastatic regional nodes. To estimate the delivered dose, we collected data by 3D-MR for the following stages: pre-MR, position verification-MR (PV-MR) in the Adapt-To-Shape (ATS) workflow, and 3D-MR during the beam-on phase (Bn-MR) and at the end of RT (post-MR). The target and organ-at-risk contours in the PV-MR, Bn-MR, and post-MR stages were projected from the pre-MR data by deformable image registration and manually adapted by the physician, followed by dose recalculation for the ATS plan. The cumulative acute genitourinary (GU) and gastrointestinal (GI) toxicities were evaluated as per NCI-CTCAE 5.0 criteria. The primary endpoints were acute ≥grade 3 genitourinary (GU) and gastrointestinal (GI) toxicities during the first 3 months. Overall, 133 MR scans were collected (35 pre-MR, 35 PV-MR, 31 Bn-MR and 32 post-MR scans). With a median on-couch time of 61 minutes, the mean prostate and pelvic planning target volume (PTV)-V95% of all scans was 96.98 ± 3.06% and 96.44 ± 2.85%, respectively. The corresponding mean prostate clinical target volume (CTV)-V100% was 99.89 ± 0.32%, 98.71 ± 1.90%, 97.77 ± 2.89%, and 98.56 ± 1.72%, and the mean pelvic CTV-V100% was 97.57% ± 3.70%, 96.54 ± 3.80%, 95.43 ± 4.31%, and 94.39 ± 4.47% on pre-MR, PV-MR, Bn-MR and post-MR scans, respectively. For the 4 patients with positive nodes, the mean V100% of metastatic regional nodes was 99.89 ± 0.81%. The median V29 Gy change in the rectal wall was -1% (-18%-20%). The V29 Gy of the rectal wall increased by >15% was observed in one scan. A slight increase in the high dose of bladder wall was noted due to gradual bladder growth during the workflow. With median follow-up time of 7.3 (4.6-12.2) months, all patients were followed-up for more than 3 months. No patient was observed with acute CTCAE grade 2 or more severe GU or GI toxicities (0%). UHF-RT to prostate and pelvic with ATS workflow is well tolerated by patients with HR and VHR prostate cancer, with only mild GU and GI toxicities. The 3D-MR-based dosimetry analysis demonstrated clinically acceptable estimated dose coverage of target volumes during the beam-on period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call