Abstract

摘要: 针对传统Unscented卡尔曼滤波器(Unscented Kalman filter, UKF)在噪声先验统计未知时变情况下非线性滤波精度下降甚至发散的问题, 设计了一种带噪声统计估计器的自适应UKF滤波算法. 首先根据极大后验(Maximum a posterior, MAP)估计原理, 推导出一种次优无偏MAP常值噪声统计估计器; 接着在此基础之上, 采用指数加权的方法, 给出了时变噪声统计估计器的递推公式; 最后对自适应UKF算法进行了性能分析. 相比于传统UKF, 该自适应UKF算法在噪声统计未知时变情况下不仅滤波依然收敛, 滤波精度及稳定性显著提高, 而且其具有应对噪声变化的自适应能力. 仿真实例验证了其有效性. 关键词: 非线性 / 自适应UKF滤波算法 / 常值噪声统计估计器 / 时变噪声统计估计器 / 极大后验估计 / 指数加权

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.