Abstract

This paper a novel adaptive interval type-2 fuzzy neural network (FNN) controller is proposed to synchronize chaotic systems with training data corrupted by noise or rule uncertainties involving external disturbances. Adaptive interval type-2 FNN control scheme and sliding mode approach are incorporated to deal with the synchronization of non-identical chaotic systems. In the meantime, the Lyapunov stability theorem has been used to testify the asymptotic stability of the chaotic systems, based on the adaptive fuzzy sliding mode control. The chattering phenomena in the control efforts can be reduced and the stability analysis of the proposed control scheme will be guaranteed in the sense that all the states and signals are uniformly bounded and the external disturbance on the synchronization error can be attenuated. The simulation example is included to confirm validity and performance of the advocated design methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.