Abstract

Two adaptive type-2 fuzzy logic controllers with minimum number of rules are developed and compared by simulation for control of a bioreactor in which aerobic alcoholic fermentation for the growth of Saccharomyces cerevisiae takes place. The bioreactor model is characterized by nonlinearity and parameter uncertainty. The first adaptive fuzzy controller is a type-2 fuzzy-neuro-predictive controller (T2FNPC) that combines the capability of type-2 fuzzy logic to handle uncertainties, with the ability of predictive control to predict future plant performance making use of a neural network model of the nonlinear system. The second adaptive fuzzy controller is instead a self-tuning type-2 PI controller, where the output scaling factor is adjusted online by fuzzy rules according to the current trend of the controlled process. The performance of a type-2 fuzzy logic controller with 49 rules is used as reference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.